USGS - science for a changing world

Northern Prairie Wildlife Research Center

  Home About NPWRC Our Science Staff Employment Contacts Common Questions About the Site

An Assessment of Exotic Plant Species of Rocky Mountain National Park

Convolvulus arvensis L. (Convolvulus ambigens, Convolvulus incanens)
Field bindweed, morning glory (Convolvulaceae)

Current level of impact
Known locations in RMNP: Moraine Park
Assessment: A few scattered number of populations. When added together, the populations would cover a total area less than 5 hectares. Plants may affect succession processes. However, the plant generally does not appear to be very aggressive in RMNP.

Origin: Introduced from Europe, thought to have been introduced to North America in 1870 in wheat, from Turkey.
Geographic distribution: Widespread throughout U.S. and southern Canada. Throughout all of U.S. except extreme southern border. In Colorado, found from 4000 to 10,000'.
Ecological range: Weed on roadsides, railroads, gardens, fields (especially in dry farming areas). Able to grow under most cultivated conditions. Because of its ability to adapt to environmental conditions, may be found at altitudes as high as 10,000'.
Soils: On rich somewhat sandy or gravely soils. Common on more basic soils and those of heavier texture. Dry to moderately moist soils, capable of surviving periods of drought.

Perennial herb, reproduces by seeds and creeping roots. Even small root fragments may give rise to new plants. Roots system is extensive and may go down 6-9 meters (Holm et al. 1977). Flowers from June to September and occasionally until first frost in fall. Plant biotypes appear to be self-incompatible.
Seed production: Number of seeds produced per plant varies from 25-300, although one individual may produce 600 seeds.
Seed viability: Seeds generally remain viable for 20 (up to 50 years) in soil.
Seed dispersal: Somewhat large seed size inhibits dispersal potential, but increases likelihood of successful germination. Seeds generally fall near plant, but may be dispersed by mammals and birds, water, and as a contaminant of crop seed.
Germination: Normally seeds germinate in autumn and the following spring. Chilling enhances germination by increasing seed coat porosity.

Bindweed can pose a threat to native plant communities because of its high capacity for germination. High rate of seed production and long-term seed viability allow this plant to spread and persist. Field bindweed is also tolerant of a variety of environmental conditions which makes it highly competitive for resources. Due to bindweed's extensive root system, it is capable of rapidly colonizing areas.
Level of impact: The Nature Conservancy recommends that even small infestations be viewed as serious because of plant's high potential for regeneration from roots, high seed production, long-lived seed viability, and highly competitive potential. Infested areas in park should be closely monitored for abundance and aerial extent. Seed sources in areas adjacent to park should be identified and managed if possible.
Response to shading: Does best in open communities with annual, biennial, and short lived weeds.

Troublesome and difficult species to eradicate due to its very extensive root system and seed longevity. Nearby agricultural lands can provide a continuous source of reinvasion from seed dispersal.
Mechanical: Difficult to control mechanically. Some studies indicate that some 20 to 25 cultivations, spread over a period of two to three years may be necessary to control this plant. Mechanical control is not a likely option because plants are able to reproduce from roots, and seed remain viable in soil for long periods.
Chemical: Most options that exist for chemical control of bindweed will likely damage desirable plants in areas of treatment. Glyphosate and dicamba provide best control when applied repeatedly at moderately high rates. Application of glyphosphate can provide good control, but only when applied at high rates (3.5-5.0 kg/ha). The most successful time of application is during the early flowering period when moisture levels are low. Even at high rates of application, repeated applications may be necessary for adequate control. Dicamba applied at a rate of 4.5 kg/ha can also provide control of bindweed. However, at these high application rates, dicamba has been observed to damage crop plants. 2,4-D (4 kg/ha) has also been used on bindweed, but is generally less effective than glyophosate and dicamba.
Biological: Currently, there are no available biological control agents for bindweed control.


Banks, P.A., L.V. Hill, and P.W. Santelmann. 1979. Control of field bindweed 
    (Convolvulus arvensis) in winter wheat (Triticum aestivam) with foliar and 
    subsurface herbicides. Weed Science 27:332-335.

Brinkman, B.A. 1982. Dicamba and dicamba tankmixes for field bindweed control 
    applied between cropping systems. Weed Science 35:128-131.

DeGennaro, F.P. and S.C. Weller. 1984. Growth and reproductive characteristics of 
    field bindweed (Convolvulus arvensis) biotypes. Weed Science 32:472-524.

Holm, L.G., D.L. Plunknett, J.V. Pancho, J.P. Herberger. 1977. The World's Worst 
    Weeds. East-West Center Book, University Press. Hawaii. Honolulu, Hawaii. 
    609 pp.

Peterson, D.L. 1991. Element Stewardship for Convolvulus arvensis L. - Field 
    bindweed. The Nature Conservancy, San Francisco, CA.

Phillips, W.M. 1978. Field bindweed: the weed and the problem. Proceedings North 
    Central Weed Control Conference 33:140-141.

Swan, D.G. 1982. Long-term field bindweed (Convolvulus arvensis) control in two 
    cropping systems. Weed Science 30:476-480.

Weaver, S.E. and W.R. Riley. 1982. The biology of Canadian weeds. 53. Convolvulus 
    arvensis L. Canadian Journal of Plant Science. 62:461-472.

Previous Section -- Cirsium vulgare
Return to Contents
Next Section -- Dactylis glomerata

Accessibility FOIA Privacy Policies and Notices

Take Pride in America logo logo U.S. Department of the Interior | U.S. Geological Survey
Page Contact Information: Webmaster
Page Last Modified: Saturday, 02-Feb-2013 06:06:31 EST
Sioux Falls, SD [sdww55]